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This report summarizes research progress in the period from June 1, !

1983 to May 31, 1984 in studies of the specific absorption rate (SAR) in a

SR
Py
1

X
5

model of the human body exposed to radiofrequency radiation in the far and ‘

e

.
; »
[

near field of anteanas. The objective of the project was to develop and

,;n".
’3 :'5 evaluate a computer-controlled system for measurements of the spatial distri-
, sﬁ bution of the SAR in simulated and real biological bodies and to perform
'é, measurements on a model of the human body in the near field of typical anten-
8 3 nas.
B4
a . Experimental System
*‘ g A computer—controlled scanning system is capable of positioning elec-
: tric field probes within a volume of 2 x‘ 0.5 x 0.5m with an uncertainty of
“ 5 0.05 mm. The system also provides for data acquisition, processing, display
ﬂé and recording. The specific absorption rate 1is calculated from the measured
R % electric field intensity. The electric field intensity is measured with
% E implantable triaxial electric-field probes. The probes have been fully cha-
‘é B racterized and calibrated at various frequencies. Their calibration accuracy

‘.‘_1

is +1 dB, while the repeatibility in the SAR measurements is better than 0.5

dB. The system can acquire, and record the data on the SAR 1in over 650 loca-

o

A
)

tions within a model of the human body {n approx. 1.5 h.
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To simulate the electrical properties of tissues new phantom materials
have been developed. They are characterized by a long life time of over one
year, 1in contrast to the previously developed materials which cannot be
stored for longer than one month as their electrical and mechanical proper-

ties deteriorate rapidly.

Energy Absorption in a Model of Man

*Far-field Investigations

Investigations in the far field were performed to assess how rellable
are numerical calculations using the block model of man. The measurements
were done at 350 MHz because of previously reported resonance of the head,
and nonuniform SAR distribution in the head. Maps of the SAR distribution

were obtained for all three polarizatioms.

The spatial distribution of the SAR is highly non-uniform, with the
SAR typically varying at least three orders of magnitude. Very large gra-
dients of the SAR occur along the direction of wave propagation. At a fre-
quency of 350 MHz, and anticipated at higher frequencies the SAR decreases
exponentially in the body parts whose dimensions arec comparable or greater
than the wavelength in free space. The neck-head region constitutes a rather

complex geometry and the resulting SAR is highly non-uniform and frequency

dependent.
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*Far-field Comparison with Theory
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A comparison of the SAR measured with the calculated data using the

v

~ ﬁ block model of man consisting of 340 cells showed a good agreement for the
: h whole-body and the head average SARs but differences of up to two orders of
?:: magntidue (a factor of 100) in the spatial distribution of the SAR and the
< SAR8 averaged over small volumes. This finding underscores the importance of

. ':“.j experimental methods in finding the SAR distributions, as well as the need

2

for verification of theoretical predictions. Verification of some of the

Y
.

calculated results (e.g. whole-body or body-part average SARs) 1s not suffi-

)
; S; tj; cient to prove the calculations correct for other data.

Pad

‘.

3 .' *Near-field Investigations

f::' ’,'i'.: Near-field investigations were performed at a frequency of 350 MHz for
"5‘ v three antennas, a resonant dipole, a res‘onant dipole over the ground plane
Xy a and a resonant slot. These antennas were selected to represent important
:}} 2 exposure situations, namely portable transmitters and leakage fields.

A

< ﬁ For all configurations investigated (9), the spatial distribution of

' the SAR is highly nonuniform with the maximum to the whole body SAR ratio of

r g about 170. The highest SARs at 350 MHz are at the antenna axis, except for
:a: i antennas in the E polarization located close to the neck-head region. 1iIn the
# I

g ] latter case the maximum SAR 1s in the neck. Larger SAR gradients exist for

the E polarization than for the other two polarizationms.
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Analogously to exposure in the far-field, at 350 MHz and higher fre-
quencies the SAR decreases exponentially in the direction of the wave propa-
gation within approx. 10-12 cm, where its magnitude is about one hundred
times below the SAR value at the surface, and about five times below the
whole-body average. Therefore, the maximum SAR in the near field is always
on the body surface, the increase in the center of the neck is small contrary

to the situation in the far—-field.

The relative spatial distribution of the SAR depends mainly on the
antenna type, position and polarization. The whole-body average SAR 1is

basically determined by the antenna gain and the distance from the body.

For antennas placed 8 cm from the body at 350 MHz, an input power to
the antenna of 25 W is required to exceed the ANSI-1982 limit of 0.4 W/kg for
the whole-body average SAR, but only 4 W is sufficient to exceed the spatial

peak SAR of 8 W/kg (averaged over 1 g of tissue).

*Near—field Comparison with Theory

A comparison with the theoretical predictions for the block model of
man consisting of 90 cells was made for a dipole in the E polarization at 350
MHz. The average whole-body SARs were found within less than 22. Large
differences were found 1in the SAR distribution, similarly as in the far-
field, the exponential decay of the SAR was not predicted by the theory.

Relatively large differences, of an order of 5 to 10, were found between the
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SAR averaged over various body volumes. This comparison again underscored

‘::-.' the inherent limitations of the theoretical analysis.
=

T
"‘j >

1
SR
R - In summary, our investigations of the SAR distribution in a full-scale
AT
,\% = mode of man showed that relevant dosimetric data 1in the far and the near

field can be conveniently and accurately obtained by the measurements using
implantable electric field probes and computer—controlled data acquisition
system. Such information cannot be reliably obtained using presently availa-

ble numerical methods.

Large gradients and non-uniformities in the SAR distribution exist for

ooyt ' exposures in the far~ and the near-field c;f antennas. Typically, the spatial
p e q peak SAR 1s over 100 times greater than the whole-body average SAR. It is
:E% ~ well justified to assume that biological responses to exposure to RF fields
‘ ’2‘ are dependent on the SAR gradients and the locations of the extrema of the

SAR, not only on the whole-body average. Therefore, information on the spa-
tial distribution of the SAR 1s essential in developing rational exposure

standards, particularly for exposures in the near-field.
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Schematic diagram of the modifieu. experimental system for the
acquisition, display and recording of the SAR distributions in
full-scale models of the human body.

Flow chart of the modified experimental system from Fig. 1.

Output power of the transmitter vs. the attenuator setting. The
linearity of the transmitter was found to be 0,052 dB + 0.03 dB
(SD), with max. difference 0.12 dB.

The transfer characteristic of the modified experimental system.
The linearity of the system was found to be + 0.32 dB.

Far~field experiments. The specific absorption rate (SAR) (nor-
malized to 1 mW/cm-) in the torso at three locations vs. position
across the torso; frequency 350 MHz, polarization E u L.

Far~field experiments. The specific absorption rate (SAR)
(normalized to 1 mW/cm-) in the torso at three locations vs.
position across the torso; frequency 350 MHz, polarization H n L.

Far~field experiments. The distribution of the specific
absorption rate (SAR) (normalized to 1 mW/cm<) along the main
axis of the body; frequency 350 MHz, polarization k i L.

Far-field experiments. The specific absorption rate (SAR)
(normalized to 1 mW/cm<4) in the torso vs. the distance from the
body surface at which the wave is incident for three position:
x = 9% cm, + x = 117 cm and * x = 137 cm from the base (feet).
Frequency 350 MHz, polarization E 1 L.

Far-field experiments. The specific absorption rate (SAR)
(normalized to 1 mW/cm2) in the torso vs. the distance from the
body surface at which the wave 1s incident for three position:
x = 9% cm, + x = 117 cm and * x = 137 cm from the base (feet).
Frequency 350 MHz, polarization H | L.

Far-field experiments. The specific absorption rate (SAR)
(normalized to 1 mW/cm2) in the torso vs. the distance across the
torso at x = 137 cm from the base (feet), frequency 350 MHz,
polarization k 1 L.

Far-field experiments. The specific absorption rate (SAR) (nor-
malized to 1 mW/cm? - logarithmic scale) in the torso vs. the
distance from the body surface at which the wave is incident.
Position x = 127 cm from the base (feet), frequency 350 MHz,

E VL.
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Far-field experiments. The specific absorption rate (SAR) (nor-
malized to 1 mW/cmz) in three body cross sections, frequency 350
MHz polarization H % L, propagation back to front.

Far~-field experiments. The distribution of the specific absorp-
tion rate (SAR) (normalized to 1 mW/cm?2) along the body axis,
frequency 350 MHz,

a) polarization E I L

b) polarization H I L.

Far-field experiments. The distribution of the specific absorp-
tion rate (SAR) (normalized to 1 mW/cm2) in the head-solid line
with experimental points, frequency 350 MHz, polarization k 1 L.
Dashed line represents the SAR distribution in a 1l6-cm dia. lossy
sphere calculated numerically and presented here for comparison.

Far-field experiments. The distribution of the specific absorp-
tion rate (SAR) (normalized to 1 wW/cm?) in the neck - at x =
150 cm from the base (feet), * on the main axis, 5 cm of the
main axis, frequency 350 MHz, polarization E 1 L.

Far-field experiments. The distribution of the specific absorp-
tion rate (SAR) (normalized to 1 mW/cm?2) averaged over the body
horizontal cross—-sections (slices) for E I L and H | L, frequency
350 MHz.

Far-field experiments. Comparison of the specific absorption-
rate (SAR) (normalized to 1 mW/cm2) distribution averaged over
the body horizontal cross—sections (slices): the data calculated
for the block model (solid l1line) and the experimental data (this
work) (dashed line), frequency 350 MHz, polarization E i L.

Far-field experiments. Comparison of the specific absorption
rate (SAR) (normalized to 1 wW/cm?) distribution in the head:

the data calculated for the block model (number in blocks) and
the experimental data (this work) (numbers in brackets), frequen-
¢y 350 MHz,

a) inner layer; polarization E i L
b) outer layer; polarization E I L
c) inner layer; polarization k I L.
Far field experiments. Comparison of the specific absorption
rate (SAR) (normalized to 1 mW/cm?2) distribution in the body:
the data calculated for the block model (shaded bars) and the
experimental data (this work) (dashed lines), frequency 350 MHz
a) E 1 L middle layer

b) E 1 L back layer

c) E VL front layer

d) k 1 L middle layer.
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o Figure 20 - Far-field experiments. Comparison of the specific absorption
( |' rate (SAR) (normalized to 1 mW/cm2) distribution in the torso
'j o along the direction of propagation: the data calculated for the
I block model (dashed-line blocks) and the experimental data (this
‘i -~ work) (stars), frequency 350 MHz, polarization E 1 L,
AT a) at x = 127 cm
b) at x = 117 cm
- c) at x = 96 cm
g ! from the base level (feet).
: . Figure 21 - Near-field experiments, resonant dipole. The distribution of the
: :} specific absorption rate (SAR) in three cross-sections of the
o body, frequency 350 MHz, polarization E 1 L, power to the antenna
iw.
I a) dipole at x = 156.5 cm

b) dipole at x = 137 cm
¢) dipole at x = 103 cm
from the base (feet).

55 & 5
)Y

Figure 22 - Near-field experiments, resonant dipole. The distribution of the
specific absorption rate (SAR) in three cross—-sections of the
body, frequency 350 MHz, polarization H # L, power to the antenna
1 W, dipole at x = 137 cm from the base (feet).

| e

Figure 23 - Near-field experiments, resonant dipole. The distribution of the
specific absorption rate (SAR) in three cross-sections of the
body, frequency 350 MHz, polarization k 1 L, dipole 14 cm above
the head.

Figure 24 - Near-field experiments, resonant dipole above the ground plane.

'B The distribution of the specific absorption rate (SAR) in three

cross—sections of the body, frequency 350 MHz, polarization

E VI L, power to the antenna 1 W, dipole at x = 137 cm from the

base (feet).
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Figure 25 - Near—field experiments, resonant dipole above the ground plane.
The distribution of the specific absorption rate (SAR) in three

'3 cross—-gections of the body, frequency 350 MHz, polarization

3 H 1 L, power to the antenna 1 W, dipole at x = 137 cm from the

base (feet).

éﬁ Figure 26 - Near—-field experiments, resonant dipole above the ground plane.
The distribution of the specific absorption rate (SAR) in three
cross—-sections of the body, frequency 350 MHz, polarfization

k I L, power to the antenna 1 W, dipole at x = 14 cm above the
head.

4

Figure 27 - Near-field experiments, resonant slot. The distribution of the
specific absorption rate (SAR) in three cross—sections of the
body, frequency 350 MHz, polarization E | L, power to the antenna
1 W, slot at x = 85 cm from the base (feet).
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Near-field experiments, resonant dipole. The mean values of the
specific absorption rate (SAR) in a number of locations along the
selected axis, frequency 35C MHz, polarization E I L, power to
the antenna 1 W,

a) dipole at x = 156.5 cm

b) dipole at x = 137 em

¢) dipole at x = 103 cm

from the base (feet).

Near-field experiments, resonant dipole. The mean values of the
specific absorption rate (SAR) in a number of locations along the
selected axis, frequency 350 MHz, polarization H I L, power to
the antenna 1 W, dipole at x = 137 em from the base (feet).

Near-field experiments, resonant dipole. The mean values of the
specific absorption rate (SAR) in a number of locations along the
selected axis, frequency 350 MHz, polarization H 1 L, power to
the antenna 1 W, slot at x = 87 cm from the base (feet).

Near—-field experiments, resonant dipole. The mean values of the
specific absorption rate (SAR) for horizontal tissue layers along
the vertical body axis, frequency 350 MHz, polarization E I L,
power to the antenna 1 W

a) dipole at x = 156.5 cm

b) dipole at x = 137 cm

c) dipole at x = 103 cm

from the base (feet).

Near—-field experiments, resonant dipole. The mean values of the
specific absorption rate (SAR) for horizonmtal tissue layers along
the vertical body axis, frequency 350 MHz, polarization H I L,
power to the antenna 1 W, dipole at x = 137 cm from the base
(feet).

Near-field experiments, resonant dipole above the ground plane.
The mean values of the specific absorption rate (SAR) for hori
zontal tissue layers along the vertical body axis, frequency 350
MHz, polarization E ! L, power to the antenna 1 W, dipole at x =
137 cm from the base (feet).

34 -Near-field experiments, resonant dipole above the ground plane.

35 -

The mean values of the specific absorption rate (SAR) for hori
zontal tissue layers along the vertical body axis, frequency 350
MHz, polarization H | L, power to the antenna 1 W, dipole at x =
137 cm from the base (feet).

Near-field experiments, resonant slot. The mean value of the
specific absorption rate (SAR) for horizontal tissue layers along
the vertical body axis, frequency 350 MHz, polarization E I L
power to the antenna 1 W, slot at x = 85 cm from the base

(feet).
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Near-field experiment, resonant dipole. The specific absorption
rate (SAR) in the torso at the dipole axis vs. distance from the
body surface at which the wave is incident frequency 350 MHz,
polarization E | L, power to the antenna

a) dipole at x = 103 cm

b) dipole at x = 137 cm

from the base (feet).

Near-field experiment, resonant dipole. The specific absorption
rate (SAR) in the torso at the dipole axis vs. distance from the
body surface at which the wave is incident, frequency 350 MHz,

polarization H | L, power to the antenna 1 W, dipole at x = 137

cm from the base (feet).

Near—field experiment, resonant dipole above the ground plane.
The specific absorption rate (SAR) in the torso at the dipole
axis vs. distance from the body surface at which the wave is
incident, frequency 350 MHz, polarization E | L, power to the
antenna 1 W, dipole at x = 137 cm from the base (feet).

Near—field experiment, resonant dipole above the ground plane.
The specific absorption rate (SAR) in the torso at the dipole
axis vs. distance from the body surface at which the wave is
incident, frequency 350 MHz, polarization H 1 L, power to the
antenna 1 W, dipole at x = 137 cm from the base (feet).

Near-field experiments, resonant dipole. The local values of the
specific absorption rate (SAR) along the selected body axis,
frequency 350 MHz, polarization k I L, power to the antenna 1 W,
the dipole 14 cm above the head.

Near-field experiments, resonant dipole above the ground plane.
The local values of the specific absorption rate (SAR) along the
selected body axis, frequency 350 MHz, polarization k | L, power
to the antenna 1 W, the dipole 14 cm above the head.

Near-field experiment. Comparison of the specific absorption
rate (SAR) averaged over the body horizontal cross—sections: the
experimental data vs. the data calculated for the block model,
resonant dipole, frequency 350 MHz, polarization E I L, power to
the antenna 1 W, dipole at x = 137 cm from the base (feet).

Near-~field experiment. Comparison of the specific absorption
(SAR) averaged in the direction of the wave propagation for vari-
ous positions along two vertical body axis. Experimental data
(this work) vs. the data calculated for the block-model of man,
frequency 350 MHz, polarization E f L, power to the antenna 1 W,
dipole at x = 137 cm from the base (feet).
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Figure 44 - Near-field experiment. Comparison of the local specific absorp-
tion rate (SAR) along the direction of the wave propagation in
the torso, experimental data (this work) (stars) and values cal-
culated for the block model (blocks), frequency 350 MHz, polari-
zation E | L, power to the antenna 1 W.
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1. INTRODUCTION

This report covers the second year of investigations of a two-year
project. The objective of the project was to develop, design and evaluate a
computer—controlled system for measurement of the distribution of the elec-
tric field or the specific absorption rate (SAR) in simulated and real biolo-
gical bodies (models and animal cadavers) and to perform measurements on a
model of éhe human body irradiated in the near field of typical radiofrequen-

¢y and microwave antennas.

The general objective was achieved through the following develop-
ments and investigatious:

- Design, development, fabrication and testing of a com-
puter-controlled scanning system for positioning
electric field probes, data acquisition, processing,
display and recording.

- Design and assembly of a small anechoic chamber to house
the radiofrequency parts of the experimental system.

- Design, fabrication and testing of auxiliary materials
and circuits necessary for the experiment, i.e. molds
of the full-size human body, tissue-equivalent materi-
als, representative antennas, electronic circuitry with

an optical-fiber link and a high-gain amplifier.
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N
‘3 \. - Comprehensive evaluation and calibration of three
+
‘ 5 types of implantable electric field probes.
N

b - Evaluation of the whole system by investigation of the

‘. SAR distributions in lossy dielectric spheres and

- cylinders (the SAR in these objects were calculated

. analytically for the comparison).
%; .\': ~ Investigations of the distribution of the specific
%;,:: ) absorption rate in a full-scale model of the human body
f} ;I exposed to a plane wave and comparison with theoretical
’-I N calculations.
A :: = Investigations of the specific absorption rate in a
. full scale model of the human body exposed in the near

field of selected antennas.

ERT K N o e
&

The first annual scientific report described in detail the development

s.f of the scanning system, anechoic chamber, the auxiliary materials and cir-

;:‘ § cuitgs. While at the end of the first year of the project, the basic system

5:' ‘ was in place and operating, additional modifications were introduced during
-

_.':"' ,4_‘: the second year to improve its performance. Only those modifications are

:, -3 outlined here, with the main body of this report devoted to the discussion of

' ‘5 the obtained experimental data.
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During the course of this work, the results were or are going to be
presented at six scientific meetings (for specifics see the list of publica-
tions and presentations p. i). The work completed was also described in
contributions in &4 refereed journals (already published or accepted for
publications), 2 papers have been submitted for publication, and since a lot
of research data has not been yet described in open literature (most of the
illustrations included in this report) preparation of further publications is

planned in the near future.
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2. EXPERIMENTAL SYSTEM

The experimental system as described earlier (S.S. Stuchly et al,
Rev. Sci. Instr., vol. 54, 1983) has been subsequently modified to improve
its accuracy and reliability and to increase the dynamic range. A block
diagram of the modified experimental system is shown in Fig. 1, and a flow
chart of the system operation is depicted in Fig. 2. The main modificatioms
included: an introduction of a digital attenuator and an improved high-gain

AC amplifier, as well as extensive software amendments.

Figures 3 and 4 illustrate the system linearity at the transmitter
and receiver end, respectively. The linear range boundaries are incorporated
into the software and are used to contol the digital attenuator so that the
electric-field measurements are always performed in the linear range of both

the transmitter and receiver.

One of the spin-offs of thils project was the development of tissue
equivalent materials which are stable in time and are characterized by a long
shelf life. The previously available tissue-equivalent materials had the
life-time of not more than one month even if stored at low temperatures. The
tissue~equivalent materials developed in our laboratory (Hartsgrove et. al.,
1984 BEMS Annual Meeting) maintain their electrical and mechanical properties

within a narrow desired range for at least one year and possibly more.
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(f Q The implantable electric field probes have been fully
AN
::j-}: ) characterized (M.A. Stuchly et al., IEEE Trans. BME, 1984).
!'.:n‘ -,
;'lj:: .
L The overall performance of the system has been evaluated by
-"i *
b & e
?_f measuring the SAR distributions in lossy spheres and cylinders at various
S
-’:',J' :::, frequencies of interest using three types of the electric field probes (Wong
\m . et al, IEEE Trans. MIT, 1984).
S
o ~
0 The system capabilities can be summarized as follows:
B o
1 (1) The SAR measurement repeatability is better than + 0.5 dB (~10%),
;'..-‘ ;:: (tested on 15 runs under various conditioms),
A
\h
"N (i1) The SAR measurement uncertainty is + 1 dB, the main fac-
,... n tor is the uncertainty in the probe calibration,
AN
:ﬂ ‘- (ii1) After the initial arrangement of the experiment, the sys-
1R
!" .. -
3~ tem can acquire the data on the electric field intensity
B ? and the SAR in over 650 locations within a model of the
-.".'-‘ )
::;-.j: human body in approximately 1.5 h.
'-,1 ;} The main difficulty experienced during the development of the
oy
:::-3 system has been inadequate performance of the available implantable electric
2ol -
':'-j field probes. Their limited sensitivity has forced us to use more complex
e
,. 30 electronic circuitry than initially anticipated. Their limitations in the
g o) frequency response and geometrical size imposed limits on the frequencies
A
\z :ﬂ' investigated. Finally, their poor mechanical properties resulted in extreme
e _
_:’%’ susceptability to breakage, which in turn led to delays, when the probes were
Y va
’:: SN accidentally broken and replacement probes had to be purchased.
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N - 3. EXPERIMENTS IN THE FAR-FIELD
{i;
s
A .

3 3.1 Rationale

- =
?}: o While the main objective of the project has been the development of
~J “
N -.
{}: .. the system and investigations of the SAR spatial distribution in the near-
AR field of typical antennas, the initial investigations were undertaken in the
A
SO far-field. The main goal was to determine the accuracy of the data based on
ORI

b -
”kx the analysis of so—called block model of man. Since the information on the
y -
\ ‘.\‘ '...

- u SAR distribution is required in addition to the average SAR for extrapolating
Ad
s:ﬁ - biological responses observed in animals into the human exposure, reliability
s N
;:ﬁ - of these data is essential. As the initial experiments showed considerable
p o

"

differences between the measured SAR and the theoretical values, it was

e
A
™.

decided that more comprehensive 1Investigations were well justified.

ol
P e
.

AR
pe b N

Furthermore, the comparisons of the SAR averaged over the whole body and over

' some of the parts were also undertaken.

~ Yy
Lot 4
s
~ -
ﬁﬁ :j The far-field measurements were performed at a frequency of 350
i‘_‘ A
- MHz, and are being presently done at 915 MHz. The frequency of 350 MHz was

1

selected because of a head resonance and a highly nonuniform spatial distri-

o,

bution of the SAR (with a maximum in the center of the head) reported for the

-

" L)

y
g block model of man (Hagmann et. al., IEEE Trans. MIT., vol. MTT-27, pp. 804-
.;ﬁ ij 813, 1979). The measurements are also being presently performed at 915 MHz
AT

:ﬁ to confirm anticipated distributions of the SAR in the torso (based on the
. f measurements at 350 MHz) and an incrased absorption in the center of the head
;;1 {, (as predicted by an analysis of an equivalent sphere).

A

23
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3.2 Experimental results

Maps of the SAR within a model of the human body having the elec-
trical properties of the average tissue have been obtained for all three
polarizations of the incident plane wave. The experimental results for two
polarizations are presented in two papers, one accepted (Kraszewski, et. al.,
IEEE Trans. MIT, 1984) for publication, and in abstracts and summaries of
conference papers to be presented in 1984 (Kraszewski et. al., 1984 IEEE/MTT
and 1984 BEMS, M.A. Stuchly et. al., EMC'84 and 1984 URSI/BEMS). The data
not included in the above publications are illustrated in Figs. 5 - 20.

Expanded figure captions are provided to illustrate various points.

A curve-fitting method has been developed to facilitate calcula-

tions of the average SAR for the whole-body and its parts from the acquired

maps of local SARs. The electric-field Probe cannot be positioned very close
to the bottom wall of the model (the probe 1s introduced to the model from
the top and normally is scanned down to a distance of approximately 2 cm from
the bottom wall of the model). Since the model is irradiated from the bottom
and the SAR decreases with the distance along the direction of propagation,
it is essential to Iinclude the SAR values in the volume adjacent to the bot-
tom wall in the calculations of the average SAR. To accomplish this task,
the experimental data are extrapolated into that volume by the least-square
curvefitting. In the majority of cases, e.g. in the torso, as shown in Figs.
8 and 11, the SAR follows an exponential function along the direction of the
wave propagation, and therefore an exponential function is fitted into the

data points and the SARs in the volume close to the model wall are
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ii calculated (Fig. 1l1). Where the SAR changes irn a less regular fashion, e.g.

in the head or legs, other functions such as polynomials were fitted into the

5; data., The extrapolated values oi the SAR were used together with the experi-

X
"A

mentally obtained values for calculations of the averages. Uniform spacing

\I Q
2 ~ between the measurement points used for averaging was maintained.
~
S
{ To calculate the whole~body average SAR the commonly used “rule of
@ v
:: - nines” (B. Ricei, Physiological Basis of Human Performance™, Lea & Febiges,
N .
N
j . Philadelphia, 1967) was applied, i.e. the contributions by weight of the
NI
. various parts of the human body were as follows:
. head and neck 0.09
:2 upper torso 0.18
)
( ! lower torso 0.18
W arms 2x0.09 0.18
-: ~:\
P upper legs 2x0.09 0.18
!: lower legs 2x0.09  0.18
N 0.99
» =
3 ;: The average SARs were calculated for each body parts and than multiplied by
i - the weighing factors and added to obtain the whole~body average. The contri=-
S
N butions of various parts of the body to the whole-body average for two pola-
i
.\ e
AR rizations are shown in Table 1.
=
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- 3.3 Comparison with theory
Table 2 presents a comparison between the average SAR for the whole

body and the head calculated from the measured data (this work) and those

-
calculated using the block model of man, (Hagmann et. al., 1979). Not all
polarizations can be compared because of a lack of the theoretical data.
‘;‘ Furthermore, for the wave propagation from head to toes (k 01 L), calculation
’: of the averages from the measured data is of questionable meaning and utili~
) ty, as the power 1s dissipated predominantly in the upper part of the body
i close to the antenna. This means that in calculating the averages it would
be necessary to use extensively the extrapolated data.
u The theoretical average SAR values were calculated in two ways,
f firstly by a simple addition of the values calculated for individual body
cells (this method was used by Hagmann et. al., 1979), and secondly using
- cell volume weighing factors to account for the differences in the size of
“ the cells in the block model. The cell volume ranged from approximately 17
-:" cm? to 690 cm3.
\ The agreement between the experiment and the theory for the whole-
- body and the head average SARs is quite good. It 1s, within 6-137%, depending
> on the method of calculation of the averages.

)

Kt S ey
LA a 4 A
‘.‘..‘ I.’\.' l“ . L]
3 Yo N N
v h N
AR

- ‘:‘j
ey

.

l‘ ?V
L]

..

s

L
L
N4
(4
o

k)

%




e
A A €+

“
O e
0
.

S aw ]y

e "p
LN IR N

e e,

et
B e S )

..;,h k<‘_

’
R 03

LN )

Ky

.

&

3 - OGN

ORIy
SARANRNS

st

A
I3

e

1
Ay

i

N

~3

s
NNV

"¢
2

Lde

S e
2 'a%a

’E

For Py 5% T%
) 'y

2 %
AclN

R 2P IR S
L (f N SR

(WA T AR o B e S DR A b

- 10 -

Another comparison between the theory and experiment is shown in

Fig. 17. The solid line shows the SAR averaged over horizontal layers of the

body along the vertical body axis, as calculated from the measured data. The

dashed line shows the SAR values calculated for the block model of man. It

should be pointed out that the geometries of the two models are slightly

different, and the models have their chins, rather than feet, aligned for

this comparison. The agreement between the theoretical and experimental

results is very good in the head, reasonable in the torso, but rather bad inm

the legs.

Significant differences between the experiment and the theory can

be observed in the spatial distribution of the SAR as illustrated in Figs. 18

and 19.

Figures 18a and 18b show the SAR values in the head at 350 MHz f~r

E 1 L in two layers of cubical cells as calculated (Hagmann et. al., 1979)

and dots and numbers in brackets show the locations and values of the measu-

red SAR, respectively. If the theoretical and experimental values are rela-

tively close in few locations, it appears to be purely coincidental. As a

rule, large differences, typically by a factor of 10 to 20, are observed

between the calculated and the measured values. The differences are greater

for the inner layer of cells, but for k I L. Similarly, large differences

can be seen, however in this case the comparison is confined by the differ-

ence in the orientation of the electric field in the experiment (shoulder-to-

shoulder) and the calculations (front-to-back).
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! Figures 19a to 19¢c 1illustrate the comparison between the cal~

Ei . culated and measured values of the SAR in the torso, at three different

ij ) depths at 350 MHz, for E | L. The columns indicate the calculated values for

$ g! the cells in which the measurements were made. The measured values are shown

g ™ by dashed 1line bars. The lines on the figurines shown in the figures
TN

& :g: designate the locatlons of the measurement points. There again, differences

of an order of magnitude are quite typical (notice that the SAR scale is

’E & logarithmic). Figure 194 depicts the same comparison for k f L. Similarly

:ﬁ Ii to the case of the head, the results are confined by the differences in the

X orientation of the electric field. Nevertheless, it 1is striking that while
;E it was determined experimentally, that for waves propagating from head to toe

at 350 MMHz the energy deposition takes place mostly in the head and the

N i upper torso, the theory predicts comparable SARs in the lower torso to those
:i in the upper torso. It should also be noted, that we do not find SAR >1

L : aW/kg for an incident power density of 1 mW/cm?2 in the torso below 50 cm from

a !? the top of the head. The calculations show the SAR values between approx 10

ﬁ “ and 100 mW/kg in the lower torso and the legs. Such striking differences

2N

A cannot possibly be attributed to the difference in the orientation of the

) electric field.

1

5; The differences 1in the actual (measured) and the predicted SAR
o distribution are probably best illustrated in Figs. 20a to 20c. In the torso,
v

at 350 MHz for the E polarization the wave 1s attenuated exponentially, and

the SAR decrases by a factor of over 10, from its value at the surface facing

L%

the source, within the first 5 cm or so. However, the theory predicts the
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\ . SAR greater or comparable in the center cell layer to those in the outer
'? layer. The differences in the SARs averages over the layers for the measured

and the calculated data are large, over an order of magnitude.

b
I
: 3.4 Discussion and main findings
:i Very good symmetry with respect to the main axis of the body in
S terms of the SAR values was confirmed in our measurements, as illustrated in
P
N Figs. 5 and 6 for two polarizations, namely E 1! L and H ' L (where L is the
. }: main body axis). This allowed us to limit the scanning to one half of the
5 model.
A
1
1
N For all polarizations at 350 MHz the SAR decreases with distance
Il from the body surface in the direction of the wave propagation for the body

Y b~
-
s

N parts whose dimensions are comparable with the wavelength. This 1is particu-

a

larly well illustrated for the E and H polarizations (E § L, see Fig. 8, and

<o

H I L, see Fig. 9). Furthermore, the decay is exponential (Fig. 12), with

o I s’
A
%

the attenuation coefficient equal to that of a planar model having the

3
3
Y electrical properties of tissue-equivalent material. In case of the k pola-
:3 rization (propagation from head-to-toes) a rapid SAR decrease occurs in the
=4
head within the first 10 cm along the direction of propagation (Fig. 7).
N
| 9
Y The SAR distribution in the head, neck and the 1limbs is highly
-
SR nonuniform. For all polarizations there 1s a maximum of the SAR in the neck
BN region, although the magnitude of the maximum 1s different for various
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(:, l' polarizations (Figs. 7, 13a, 13b). The greatest SAR in the center of the
LR .
X
T neck is for the E polarization, with the SAR 100 mW/kg per 1 mW/cm? of the
ﬁ\: ..
CaN] e
j; o incident power density. While in most cases, the highest values of the SAR
3 !! are on the body surface facing the antenna, this is not the case for the neck
Y \.':'
N (Fig. 15).
» .
- --.T
o
, Increased absorption above the knee can also be observed for the E
SIS
3 ~ and H polarizations.
v
-
SRy
“ sl In case of the k polarization and the propagation from head-to-
ff} . toes at 350 MHz, the distribution of the SAR can best be described as "a man
Ry 35
™ in the shower”. Maximum values of the SAR in this case are on the body sur-
N i' faces facing the antenna perpendicular to the direction of the wave propaga-
b -~
X
% tion, with the head providing a "shadow"™ for parts of the upper torso.
f » :
:; The distribution of the SAR in the head closely resembles that in a
1o A
sphere of the equivalent size and electrical properties for the E and k pola-
'3 rizations. However, a case of the head resonance at 350 MHz, as predicted by
the theory, has to be viewed with circumspection. The SAR values inside the
-
+y head are not greater than at the surface.
b
&
The SAR averaged over the horizontal body layers and the whole-body
‘
.: average are not significantly different for the E and H polarizations except
. in the neck, (Fig. 16, Table 1). The whole-body averages are in a relative-
&
LS
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ly good agreement with the values calculated for spheroidal models of the
average man (the Radiofrequency Dosimetry Handbook, second edition). How-
ever, the differences up to about 30% exist, which is not surprising in view
of differences in shape. More importantly, the whole-body average at 350 MHz
is greater for the H polarization than for the E polarization. According to
the spheroidal- model data such behaviour is characteristic at higher fre-

quency (above 600 MHz for an average man).

Qur data on the SAR distribution 1is in a very good agreement with
the experimental data obtained by the thermographic technique (for detalls

see Kraszewski et. al., IEEE Trans. MIT, 1984 accepted).

On the other hand, a good agreement wich the theoretical data
cbtained for the block model occurs for the whole-body average SAR (fable 2),
only reasonable agreement for the SAR averaged over the layers perpendicular
to the body axis (Fig. 17), and a lack of agreement for the spatial distribu-

tion of the local values of the SAR (Figs. 18, 19, 20).

3.5 Conclusions and future research plans

The spatial distribution of the SAR in a full-size homogeneous
model of man has been measured at 350 MHz for three orthogonal polarizations
of the incident electromagnetic field. The whole-body average SAR has been
calculated where such calculations were umeaningful. From the comprehensive

experimental data obtained the following conclusions can be drawn:

N A A . oL et SE . D R P e e
- AT AT a AT T et e e e s T e e LU N
P . e Cate e ta . 2wt e e T Cte et
» IO G U . Y




«ava® Ta¥e

AN VPITLE Y P © PPN N

Al s i

B

RIS A ]

O o cor s s

P W B e R

oo vl W

iy

LS W

L et i &

Li

. ": "r

-

.
»

;&

B
a%%.

(1)

(11)

(111)

(iv)

T . e e o ., « B P S
. " \".\(‘.“. ..4',.$.‘.\-..'-.\ ORGSR AN R

''''''''''

- 15 -

The spatial distribution of the SAR is highly non~uniform,
with the SAR typically varying within at least three or-
ders of magnitude. Very large gradients of the SAR occur
along the direction of wave propagation. Even greater
non-uniformities can be expected in the actual human body
which is electrically inhomogeneous.

At a frequency of 350 MHz, and anticipated at higher
frequencies, the SAR in the torso exhibits exponential
decay in the direction of the wave propagation, with the
exponent equal to that of the planar model having the
electrical properties of the tissue. This indicates that,
with some restrictions, the principles of geometrical op-
tics can be applied to determine the SAR distribution in
the torso at frequencies lower than previously predicted.
The neck-head region constitute; a rather complex geometry
and the resulting SAR distributions are difficult to pre-
dict are highly non-uniform and frequency dependent.
Theoretical analysis of the block model of man consisting of
about 340 cells does not provide adequate data on the SAR
distribution, even approximately, at frequencies equal and

greater than 350 MHz.
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Further experimental investigations should address the following

Does the exponential behaviour of the SAR occur also at
higher frequencies (f >3350 MHz)?

Can the approximation of the head by an equivalent lossy
sphere be used to determine the frequencies at which the
SAR in the head cénter is greater than on the surface?
Does the block-model of man provide more reliable
information on the spatial distribution of the SAR at
frequencies below 350 MHz, particularly close to the whole
body resonance at 80 MHz? (As the cell size as compared to
the wavelength becomes smaller as the frequency decreases,
the block model provides a bet?er approximation of the
human body).

What 1is the effect of the non-homogeneous tissue properties

of the SAR distribution?
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4. EXPERIMENTS IN THE NEAR-FIELD

4.1 Experimental results

All near-field experiments were performed at a frequency of 350 MHz
for three antennas, a resonant dipole in free space, a resonant dipole over
the ground plane and a resonant slot. These antennas were selected to repre-—
sent important exposure situations, namely portable transmitters and leakage

fields.

All the antennas were designed to be well matched in the free space
and with the human model in the vicinity (VSWR < 1.2). The antennas were
placed approx. 8 cm from the model surface at various locations along the
vertical axis. All the SAR values are normalized to 1 W input power to the

antenna.

Figures 21 to 27 provide the data on the spatial distribution of
the SAR in three cross-sections of the model of the human body. The cross-
sections are located in the center (z=10 cm), and 5 cm off center, toward the
front (z=5 cm), and toward the back (z=15 cm)._ The values shown are averages
of three to five independent measurements. The following antennas and their
positions were investigated:

(1) dipole, E I L placed 156.5 cm (Fig. 2la)
137 em (Fig. 21b), and 103 cm from the base (feet)

of the model (Fig. 21c)

(41) dipole, H I L, placed at 137 cm (Fig. 22)
(1141) dipole, k I L, 14 cm above the head (Fig. 23)

A A i A I e i i et
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(iv) resonant dipole (A/2 dipole above the ground plane)

1
~ 1R

E 0 L (Fig. 24), H 0 L (Fig. 25), and k 1 L (Fig. 26)

i iy a3
a

-

EN (v) slot, E I L, placed at 87 cm from the model base (feet)
&
-» (Fig. 27).
v
e
i f? The spatial distribution of the SAR in various locations along two
‘(‘
body axis and averaged over the tissue volume perpendicular to the direction
<
.
:i of propagation 1s shown in Figs. 28 to 30. Figure 28 illustrates the SAR

distribution for three locations of the dipole along the vertical body axis

o L, L X ]

ranging from the head to the waist for E | L. Figures 29 and 30 provide the

same data for a resonant dipole and slot, respectively.

<a, i L -
VAN

>
.
t Y
o

The distribution of the SAR averaged over horizontal tissue layers

along the body vertical axis is shown in Figs. 31 to 35, for the dipole

.

% -~ (Figs. 31 and 32), resonant dipole (Figs. 33 and 34) and the slot (Fig. 35).
.

A o The changes 1in the local values of the SAR along the direction of
. 23 wave propagation are illustrated in Figs. 36 to 41. Figures 36 to 39 show
SRS the local values of SAR as a function of the distance along the direction of
R "~

2: - the wave propagation, the mean SAR for a given location (averaged over the
% é; body dimension along the direction of propagation) and the whole-body avera-

ged SAR for various antennas. The least-square fit curve and its parameters
are also shown on each figure. The fitting line 1s described by the equa-

tion:

. -
L

;. SAR = A exp (-Bz)

N/
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)
(; u Figures 40 and 41 show the local SAR values along the direction of propaga-
Xy
}$3 tion for the antenna above the head of the human body model, and the wave
AT
:}) . propagation from head to toe.
. =
Ny
,aj - The whole-body average SAR and average SARs for various body parts
et
e A
L*i . were calculated following the same procedure as described in the earlier part
\ of this report for the far-field. The results are summarized in Table 3.
\‘:: ‘
ko ne
'gt oy 4.2 Comparison with theory
W3 .
3 Qur experimental data can be compared with calculations performed
\.(
N -
NP N using the block model and the method of moments solutiom of the tensor inte-
o .
2 gral equation. This solution was published for a resonant dipole radiating

-
4y
) ~ &

at a frequency of 200 MHz (R.J. Spiegel, IEEE Trans. MIT., vol. 30, pp. 177-

-
T 8
.l

‘et

:ﬁ% S 185, 1982), and the calculations at 350 MHz were performed by Dr. Spiegel
." o -
Y S
;%3 upon our request.
-y
e B
.. S
\;, The calculations were done for a block model consisting of 180
. Y
t:ﬂ ' cells (total for the whole body) and for the E polarization (E 1 L). The
:) = essential parameters were identical for the calculations and the measurements
AV
o as summarized in Table 4. Some minor, nonessential differences can be
L .
.:? ‘g noticed, e.g. the experimental dipole had to be shortened to ensure impedance
N matching to the source.
o, ~
:~"
. .
;:' The whole-body average SARs calculated and measured are relatively
LS
o -
N !5 close, 7.9 and 7.8 mW/cm?, respectively. The difference can be easily attri-
;3 -, buted to the difference in the distance of the dipole from the body surface
“w

(7.3 cm vs. 8 cm).
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In view of the limited number of cells in the block model (90 cells
for half of the body) and our experience in the far-field, we decided to
compare SAR values averaged over limited volumes rather than the 1local

values.

Figure 42 gives a comparison of the SAR values averaged over the.
horizontal tissue layers along the main axis. Both the theory and the expe-
riment indicate maximum mean SAR in the neck region, not on the dipole axis,
which 1is below, on the shoulder level. However, the SAR values at the
maximum are different by a factor of about three. The differences in the SAR

values 1n other locations are of about the same order of magnitude.

Figure 43 glves a comparison of the SAR values averaged along the
direction of wave propagation. The differences here are similar to those in

the previous comparison, generally within a factor of three to five.

Large differences, however can be noted in the SAR along the direc-
tion of propagation in the torso on the dipole axis, as shown in Fig. 44.
Experimental data shows that the SAR decreases exponentially with the wave
penetration distance from the surface of incidence (z=20 cm). The SAR is
below one hundreth of the value on the suriace at distances from the surface
greater than 10 cm. However, according to the calculations the SAR in the
cells about 14 cm from the surface facing the dipole (the third layer of
cells) 1s only about 2 times smaller than in the first layer of cells on the

antenna slde.
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The comparison of the experimental data with the calculations for
the block model of man underscores the limitations of this theoretical analy-
sis for the near-field exposures. This conclusion is the same as the one
reached after the comparison of the far-field data. The inaccuracies in the
calculations are inherent in the method employed and the size of the cells,
as clearly indicated by Dr. Spiegel. Differences in the shape of the human

body models and antenna parameters appear to play only a secondary role.

4.3 Discussion and main findings

The spatial distribution of the SAR in the body cross-sections is
highly non~uniform for all antennas and their locations as illustrated in
Figs. 21-27. The highest SARs are nearly, but not always on, the axis of the
antenna. When the antenna 1is positioned close to the head-neck region and
for the E polarization, the maximum SAR 1s shifted off the dipole axis
towards the head (Figs. 2la, 21b, 24). &his feature 1s characteristic for
both dipoles, the resonant dipole and the resonant dipole above the ground
plane. However, for the H and k-polarizations the maximum SAR is on the axis

of the dipole. The same holds when a dipole radiating with the E-polariza-

tion is placed close to the lower torso.

A comparison of the SAR maps for the E and the H-polarization
(Figs. 21b and 22) shows tnat larger SAR gradients exist for the E polariza-
tion, notwithstanding the fact that the whole-body average SAR is very close
for the two polarizations, namely 7.8 mW/kg for the E and 6.6 mW/kg for the

H-polarization (Table 3).
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!: A resonant dipole above the ground in the E polarization (Fig. 24)
{_ gives a very similar SAR map to that of a resonant dipole in free space (Fig.
:§Z 21b) with the SAR values greater by the factor of approximately two, as
= expected because of the increase in the gain. It can also be noted, that the
- increase in the whole-body average SAR is also about twice (Table 3). The
3 same observation applies to the H polarization, as shown in Figs. 22 and 25.
| In case of the k-polarization, Figs. 23 and 26, the increase in the SAR
values 1s somewhat less than two times when the dipole 1is placed above the
A ground. The gain for the dipole in free space and above the ground plane is

3 1.64 and 3.28, respectively.
; A half-wavelength resonant slot radiating in the E polarization
E (Fig. 27) deposits the energy more uniformly than a dipole (Fig. 21c) in the
= horizontal plane of the body. For the slot in the plane of its axis and
= nearby, the SARs on the body vertical axis and 10 cm off the axis are very

2 close (Fig. 27).

The non-uniform distribution of the SAR is further illustrated in
;; e Figs. 28-30. Theses figures shows the SAR values in various body locations.
:Z: ; The SAR was calculated as the mean value of the volume having the probe dia-
:Ek ?i meter (9 mm) and extending from the body front to the back. Several featu-

res, of the way the energy is deposited in the body, can be observed here.
The maximum mean values of the SAR is about 100 mW/kg per 1 W of the input
power for the dipole in both the E and H polarizations (Figs. 28, 29), but
only about 20 mW/kg for the slot (Fig. 30). The maximum is on the antenna

axis, except when the anterna 1is located close to the neck (Figs. 28a, 28b).

........

e AL TN e

R I SN 4 - “ T M. PR S . ™t JOCI R . FOEE R . - . . . .
SR RO A PR S LT P Sy G PR PR A PV R WA WV W PP A S IR




O
AN

~— Do

LRI R S R ¢

“' ."‘l 2

h

AL MO 2N

28 '
.A -_ »

YA

S,

c e
ST Pl )

'4
i

'4‘1'1'1”
PR PR

Ay
LR IR

.
e (D
2 e
2 e

-

(I

f

8y
"
'
‘
oy
[
.

i v
PPV AR SRR P

o

‘ L'.g'.;

—23_

The slot (Fig. 30) creates a broader SAR maximum in both directioms. It can
also be observed that for the dipoles, and to a lesser degree for the slot,
the changes of the mean SAR along the vertical body axls are quite rapid,

more than an order of magnitude within 10 cm being typical.

The RF energy 1s highly non-uniformly absorbed along the vertical
body axis, even when averaged over the horizontal tissue layers, as illustra-
ted in Figs. 31-35. Figures 3la, 31b and 33 clearly show that also the maxi-
mum of the mean SAR 1is shifted toward the neck region, off the axis of the
dipole, for both types of dipoles, for the E-~polarization. Also for the slot
in the E-polarization located in the lower torso region, a small increase in
the SAR occurs in the neck. The SAR value is small-though (approx. 3 aoW/kg)
as compared with the maximum (20 oW/kg), as shown in Fig. 35. The maximum
mean SAR for the dipole above the ground plane is higher for the E and H
polarizations than for the dipole in free -space, but not two times (Figs. 31b

and 33, 32 and 34).

One of the most important findings is that the SAR decreases expo-
nentially in the direction of the wave propagation at a frequency of 350 MHz
and for the E- and the H-polarization. This behaviour is analogous as for
the exposure in the far-field. When an exponential curve is fitted into the
experimental data points, as shown in Figs. 36-39, only at distances greater
than approx 12 cm from the surface upon which the wave is incident, departure
of the experimental results from the fitting line can be observed. Further-
more, at those distances the SAR is more than one hundred times below the
maximum value on the surface, ten or more times below the mean value for the

locations, and three to five times below the whole-body average.
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il The maximum SAR consistently appears at the body surface, although
XIS
:3 its vertical location may vary depending on the antenna location, as under-
R
e lined earlier when the antenna 1s in the neck region the location of the

- maximum along the vertical axis shifts toward the neck. The value of the

maximum is over 1 W/kg per 1 W of the antenna input power for the dipole in

{“" l, l. .‘ {

(. o free space, and over about 2 W/kg for the dipole above the ground plane, as
t\ N summarized in Table 5. It should be noted that the maxima for the E polari-
;5 - zation and x=137 cm listed in Table 5 do not represent the maxima along the
N

EQ ﬁf vertical axis, which explains their lower values.

f? L]

?; ;3 The attenuation coefficient is very close for all the situatious
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PPN

analysed (Table 5), and furthermore 1is very close to the theoretical value of
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rial.

calculated from the electrical properties of the tissue phantom mate-

It should also be pointed out that the three standard deviations for

the attenuation coefficient, as listed in Table 35,

than 5%.

When the antenna is positioned above the head,

are very small,

not more

as In Figs. 40 and

41, the distribution of the SAR along the direction of propagation 1is more

complex.

centimeters, (about 10 cm), is evident.

Nevertheless, a nearly expounential decrease within the first few

An increase absorption in the neck

can again be observed, although the SAR values are about 10 times below those

on the surface (the top of the head).

Similarly, like in the far-field, the

exposure situation can best be described by a term "a man under the shower”

(see Figs. 23, 26, 40, 41).
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\ " The average SAR in various parts of the body, as expected, depends
.t -

:ﬁ on the position of the antenna with respect to the body and to a certain
\l
"ot
13 extent on the polarization as illustrated by the data summarized in Table 3.
.

- Whenever an antenna irradiating the body 1in the E-polarization is placed

! N
{ﬂ close to the neck, the head-neck SAR 1is significantly increased, but the

‘ . increase does not occur for the H-polarization. This is clearly visible in
‘\ . Table 3 for the dipole, and x=137 em (x is the distance of the dipole axis
SR

I
'%‘ < from the base (feet) of the model).

4
SHTN
OB
> The whole-body average SAR 1is mainly determined by the antenna
.

“ LY

2 :j gain, and to a much lesser degree by the antenna location. The dependence on
3: . the antenna location basically reflects the dependence on the average distan-

F
I- !

ce to the body surface (it should be noticed that the antenna axis was always

Y

b o 9NN
»
’

8 cm from the body surface, but because of the body curvature the distance

b

Y
"
>

between the antenna aperture and the body surface varied for different

X !2 antenna positions and polarizations).
b .
“. ‘e
~ W
VI 4.4 Conclusions and future research
h
v %
:j ) The spatial distribution of the SAR in a full-scale homogeneous
o -
\J‘ \".
:j 25 model of man at 350 MHz and three polarizations of the incident wave has been
X\ B measured and analyzed for three antennas in the near field. The whole-body
Y RN !
-,‘ ."4
g‘ > average, the body parts and selected volumes SARs have been calculated. The

o2

antennas selected represent typical practical situatioms, such as portable

LAZS

transmitters and leaky RF transmitter cabinets or similar hardware. Further-

more, the linear antennas (dipoles) are the only antennas suitable for theo-
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5 'ﬂ retical analyses. The following conclusions can be drawn on the near-field
1‘\_ -
ﬁ‘} exposure:
J“:: J o
¢ -
$ o (1) The spatial distribution of the SAR is highly noa-uniform
i - in at least two and frequently in all three directions.
SO
Z:nj Typically differences between the maximum SAR and the
ji if whole~body average SAR are as 1000 to 7 (140 to 1).
\ . (11) At 350 MHz, and anticipated at all higher frequencies, for
E@ e all antennas investigated, the SAR decreases exponentially
;?. -2 with the distance from the body surface upon which the
N »
= wave 1s incident. The attenuation coefficient is very
I IS
i . close to that of a plane-wave incident upon a half-space
1
! having the same electrical properties as the body tissue.
i: ‘B This is a very important finding, as it shows that a sim-
by
3& : plified analysis can be employed to determine the relative
-:P ) SAR distribution in the direction of propagation (at least
8 g! for the E and H-polarizations) for multilayerd (skin, fat,
Ve
QQ . bone, muscle) models of human body. Still more sophisti-
) A
N cated analysis has to be used to find the absolute values

. L
4
i

A

:;* = of the SAR, as these depend on the antenna type, position,
._4'3 .
.::‘ polarization and distance from the body.
‘\3.: _: .
&4 :5 (111) For the E-polarization there is a tendency for the maximum
oy
A absorption to shift toward the neck region if the antenna
ff% ) i1s nearby that region, and a small increase in the SAR
>
*ued
] :é occurs for other antenna positions.
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(iv) The relative spatial distribution of the SAR depends main-

ly on the antenna position and polarization as well as
type (e.g. dipole vs. slot), but the whole-body average
SAR 1is basically determined by the antenna gain and the
distance from the body.

(v) The block model of man consisting of 180 cells does not
provide adequate data on the SAR distribution at frequen-

cies equal and greater than 350 MHz.

Further experimental investigations should address the following:

(1) Confirmation of the conclusions drawn for frequencies
above 350 MHz, at least one more frequency (915 MHz).

(i1) Determination of the lower bound of frequency for which
the SAR decreases exponentially in the direction of wave
propagation. ‘

(1i1) Investigations of such practical antennas as a short helix
and a monopole (whip), which are used in portable trans—

mitters.

Our final question related to the near-field exposure maybe worth
addressing. According to the ANSI recommendations (ANSI C95.1-1982), the
upper limits for near-field exposures are the average SAR (whole-body) of 0.4
W/kg and the spatial peak SAR 8 W/kg as averaged over 1 g of tissue. At a
frequency of 350 MHz the output power of portable transmitters should not
exceed 25 W for the average SAR to be above the limit for practical distances

of 7 to 10 ecm for the antenna separation from the body surface. However,
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S E only about 4 W appear to be sufficient for exceeding the spatial peak SAR.
%

“:-' Whether this condition should apply when the peak SAR 1is on the body surface
i

::j::- "o is a separate question.
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ks . Table 1
N === -
RIS
b
X Average specific absorption rates in various part of a full-scale
( ' model of man exposed to a plane-wave of 1 mW/cm? at 350 MHz
N
.4
- SAR (mw/kg)
‘s Body part E I L HIL
S head & neck 93.8 41.2

4 upper torso 11.2 26.8
e lower torso ' 17.0 31.1

arms 36.0 68.9

LML
el

ﬁ legs 55.5 56.9
whole body 40.0 47.0
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b Table 2
) .
-
‘I
¢ Comparison of the specific absorption rat. (SAR)

' (normalized to 1 mW/cm~ In the head and the whole body):
2 s calculated for the block model and experimental results (this work)
=~ frequency 350 MHz, polarization E &« L
N
'll -
‘_’Q ',‘

SAR Calculated Measured
2 " [mW/kg]
o Head (1) 108.0 102.2
2R Head (2) 98.2 93.8
. Whole-body (1) 44,5 40.2
SO
N Whole-body (2) 46.2 40.0
>
N ] (1) Straight summation
(2) Weighted by volume factor
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Table 4

Exposure conditions for the experiment and the parameters for

the block model calculations in the near-field

PARAMETER EXPERIMENT CALCULATIONS
Frequency (MHz) 350 350
Nominal dipole length N2 A2
Actual dipole length 0.43) 0.5\
Dipole length/radius 117 200
Input impedance (Q) 50 48.3
Distance from the body 8 7.3
(cm)

Model height {(cm) 175 170
Dielectric constant 37 37
Conductivity (S/m) 0.954 0. 954
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Table 5

Maximum and mean specific absorption rate SAR along the direction
‘ of propagation, SAR, and the attenuation coefficient for
RICTEEY antennas in the near-field

T4 -
o
(O
N’ h‘
!“ .\
Antenna Polari- x! SAR(mW/kg)
- zation (cm) Max Mean | WB Ave. B<
S Dipole E 103 | 1090+863 | 100 8.1 -0.567+0,0113
N E 137 49£32.5! 50 7.8 ~0.464+0.009
- H 137 | 1053+193 | 9% 6.6 -0.515+0.027
I Dipole E 137 | 1291330 | 139 17.8 -0.464+0.012
.:3 . above ground
4 Ei H 137 2632+516 | 247 13.5 -0.503+0.024
oo
I 1 x is the distance of the antenna axis from the model feet
“~
H 2 B 1s the attenuation coefficient, see also Figs. 36-39
!ﬁ (the attenuation coefficient for the infinite half space irradiated
o by a plane wave is B = 0.4940.02)
gi :§ 3 shows three standard deviations
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Figura 3 - Output power of the transmitter vs. the attenuator setting. The
e ‘ linearity of the transmitter was found to be 0.052 dB + 0.03 dB
(SD), with max. difference 0.12 dB.
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,“ Figure 5 - Far-field experiments. The specific absorption rate (SAR) (nor-
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across the torso; frequency 350 MHz, polarization E H L.
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Frequenc: .50 MHz, polarization E || L.
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Figure 9 - Far-field experiments. The specific absorption rate (SAR)
(normalized to 1 mW/cm?) in the torso vs. the distance from the
body surface at which the wave is incident for three position:
x =9 cm, + x = 117 em and * x = 137 cm from the base (feet).
Frequency 350 MHz, polarization H || L.
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The distribution of the specific absorp-

tion rate (SAR) (normalized to 1 o/ cm?2) along the body axis,
frequency 350 MHz,
a) polarization E [| L
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Near-field experiments, resonant dipole. The mean values of the

specific absorption rate (SAR) in a number of locations along the
power to

selected axis, frequency 350 MHz, polarization E B L,
the antenna 1W,

c) dipole at x = 103 cm
from the base (feet).
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Figure 29 - Near-field experiments, resonant dipole. The mean values of t°
specific absorption rate (SAR) in a number of locatioans along tiue
i selected axis, frequency 350 MHz, polarization H [[ L, pcwer to
— the antenna 1W, dipole at x = 137 cm from the base (feet).
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i Figure 31 - Near—-field experlments, resonant dipole. The mecn values of the
specific absorption rate (SAR) for horizoantal tissue layers along

< the vertical body axis, frequency 350 MHz, polarization E || L,

) power to the antenaa 1W
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Figure 31 - Near-field experiments, resonant dipole. The mean values of the
specific absorption rate (SAR) for horizontal tissue layers along

the vertical body axis, frequency 350 MHz, polarization E ll L,
power to the antenna 1W

c) dipole at x = 103 cm
from the base (feet).
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Figure 32 - Near-field experiments, resonant dipole. The mean values of the
specific absorption rate (SAR) for horizontal tissue layers along
the vertical body axis, frequency 350 MHz, polarization H || L,

power to the antenna 1W, dipole at x = 137 cm from the base
(feet).
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Figure 33 — Near-field experiments, resonant dipole above the ground plane.
The mean values of the specific absorption rate (SAR) for hori-
zontal tissue layers along the vertical body axis, frequency 350

MHz, polarization E ll L, power to the antenna 1lW, dipole at x =
137 em from the base (feet).
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Figure 34 -~ Near-field experiments, resonant dipole above the ground plane.
The mean values of the specific absorption rate (SAR) for hori-
zontal tissue layers along the vertical body axis, frequency 350

MHz, polarfization H ll L, power to the antenna 1W, dipole at x =
137 cm from the base (feet).
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Figure 35 - Near-field experiments, resonant slot. The mean value of the
specific absorption rate (SAR) for horizontal tissue layers along
the vertical body axis, frequency 350 MHz, polarization E ]I L
power to the antenna 1W, slot at x = 85 cm from the base (feet).
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Figure 36 ~ Near-field experiment, resonant dipole. The specific absorption
rate (SAR) in the torso at the dipole axis vs. distance from the
body surface at which the wave is incident frequency 350 MHz,
polarization E | L, power to the antenna

b) dipole at x = 137 cm
from the base (feet).
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Figure 37 - Near-field experiment, resonant dipole. The specific absorption
rate (SAR) in the torso at the dipole axis vs. distance from the
body surface at which the wave is incident, frequency 330 Miz,
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The specific absorption rate (SAR) in the torso at the dipole
axis vs. distance from the body surface at which the wave is
incident, frequency 350 Miz, polarization E || L, power to the
antenna 1W, dipole at x = 137 cm from the base (feet).
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